so i believe cannatrol's surface sensor is a wet bulb temp sensor....
something i read, hope it pastes ok, the article was long and this was the only important part.
Dry Bulb, Wet Bulb, and Dew Point Temperatures
The
Dry Bulb,
Wet Bulb and
Dew Point temperatures are important to determine the state of humid air. The knowledge of only two of these values is enough to determine the state - including the content of water vapor and the sensible and latent energy (enthalpy).
Dry Bulb Temperature - Tdb
The Dry Bulb temperature, usually referred to as air temperature, is the air property that is most common used. When people refer to the temperature of the air, they are normally referring to its dry bulb temperature.
The Dry Bulb Temperature refers basically to the ambient air temperature. It is called "Dry Bulb" because the air temperature is indicated by a thermometer not affected by the moisture of the air.
Dry-bulb temperature -
Tdb, can be measured using a normal thermometer freely exposed to the air but shielded from radiation and moisture. The temperature is usually given in degrees Celsius (oC) or degrees Fahrenheit (oF). The SI unit is Kelvin (K). Zero Kelvin equals to -273oC.
The dry-bulb temperature is an indicator of heat content and is shown along the bottom axis of the psychrometric chart. Constant dry bulb temperatures appear as vertical lines in the psychrometric chart.
Wet Bulb Temperature - Twb
The
Wet Bulb temperature is the temperature of adiabatic saturation. This is the temperature indicated by a moistened thermometer bulb exposed to the air flow.
Wet Bulb temperature can be measured by using a thermometer with the bulb wrapped in wet muslin. The adiabatic evaporation of water from the thermometer and the cooling effect is indicated by a "wet bulb temperature" lower than the "dry bulb temperature" in the air.
The rate of evaporation from the wet bandage on the bulb, and the temperature difference between the dry bulb and wet bulb, depends on the humidity of the air. The evaporation is reduced when the air contains more water vapor.
The wet bulb temperature is always lower than the dry bulb temperature but will be identical with 100% relative humidity (the air is at the saturation line).
Combining the dry bulb and wet bulb temperature in a psychrometric diagram or Mollier chart, gives the state of the humid air. Lines of constant wet bulb temperatures run diagonally from the upper left to the lower right in the Psychrometric Chart.
Dew Point Temperature - Tdp
The
Dew Point is the temperature at which water vapor starts to condense out of the air, the temperature at which air becomes completely saturated. Above this temperature the moisture will stay in the air.
If the dew-point temperature is close to the air temperature, the relative humidity is high, and if the dew point is well below the air temperature, the relative humidity is low.
If moisture condensates on a cold bottle from the refrigerator, the dew-point temperature of the air is above the temperature in the refrigerator.
The Dew Point temperature can be measured by filling a metal can with water and ice cubes. Stir by a thermometer and watch the outside of the can. When the vapor in the air starts to condensate on the outside of the can, the temperature on the thermometer is pretty close to the dew point of the actual air.
The Dew Point is given by the saturation line in the psychrometric chart.